
(Lab 4) Problem Set 3: 
Methods, Classes, & APIs

P3 Solutions limited in scope to: 

● P1 Concepts
● P2 Concepts

● Methods Declarations
○ Passing data in
○ Returning data out

● Method Invocations
○ Use Java API methods
○ Use pre-existing methods

Submission Rules:

1. Submissions must be zipped into a handin.zip file. Each problem must be implemented in its 
own class file. Use the name of the problem as the class name.

2. You must use standard input and standard output for ALL your problems. It means that the 
input should be entered from the keyboard while the output will be displayed on the screen. 

3. Your source code files should include a comment at the beginning including your name and 
that problem number/name.

4. The output of your solutions must be formatted exactly as the sample output to receive full 
credit for that submission.

5. Compile & test your solutions before submitting.

6. Each problem is worth up to 10 points total. The breakdown is as follows: 2 points for 
compiling, 3 points for correct output with sample inputs, 5 points for additional inputs.

7. This lab is worth a max total of: 40 points. You can complete as many problems as you like, 
but cannot receive more than 40 points towards the lab grade. All points in excess of that are for
bragging rights. (Check the scoreboard to see how you did!)  

8. Submission:

● You have unlimited submission attempts until the deadline passes 

● You'll receive your lab grade immediately after submitting 

● IMPORTANT: if your grade is lower than 70% when the deadline passes, then you must 
attend a recitation session & get TA signoff to receive full credit for that lab challenge.

Problem 1: Geometry (10 points) Make API



(API design) Java is an extensible language, which means you can expand the programming language 
with new functionality by adding new classes. You are tasked to implement a Geometry class for Java 
that includes the following API (Application Programming Interface): 

Geometry Method API:

 Modifier and Type  Method and Description

 static double  getAreaRectangle(double width, double length)
 Returns the area of a rectangle, area = length * width

 static double  getAreaCircle(double radius)
 Returns the area of a circle, area = 𝝅(radius2)

 static double  getAreaTriangle(double base, double height)
 Returns the area of a triangle, area = ½(base * height)

 static double  getPerimeterRectangle(double width, double length)
 Returns the perimeter of a Rectangle, perimeter = 2(length + width) 

 static double  getPerimeterCircle(double radius)
 Returns the perimeter of a Circle, perimeter = 2𝝅(radius)

 static double  getPerimeterTriangle(double side1, double side2, double 
side3)
 Returns the perimeter of a triangle, perimeter = s1 + s2 + s3

Facts
● Java Math class contains an approximation for PI, i.e. Math.PI 
● Your Geometry class implementation should not have a main method.
● NO   Scanner for input & NO System.out for output!

Input
The Geometry class will be accessed by an external Java Application within Autolab. This Java app will 
send data in as arguments into each of the methods parameters.

Output
The Geometry class should return the correct data calculations back to the invoking client code 

 Sample Method Calls  Sample Method Returns  (Not Printouts)

 getAreaRectangle(1,1);
 getAreaCircle(1);
 getAreaTriangle(1,1);
 getPerimeterRectangle(1,1);
 getPerimeterCircle(1);
 getPerimeterTriangle(1,1,1);

 1.0
 3.141592653589793
 0.5
 4.0
 6.283185307179586
 3.0

Problem 2: Time (10 points) Make API



(API design) Java is an extensible language, which means you can expand the programming language 
with new functionality by adding new classes. You're tasked to implement a Time class for Java that 
includes the following API (Application Programming Interface): 

Time Method API:

 Modifier and Type  Method and Description

 static double  secondsToMinutes(int seconds)
 Returns number of minutes from seconds, 1 minute = 60 seconds

 static double  secondsToHours(int seconds)
 Returns number of hours from seconds, 1 hour = 60 minutes

 static double  secondsToDays(int seconds)
 Returns number of days from seconds, 1 day = 24 hours

 static double  secondsToYears(int seconds)
 Returns number of years from seconds, 1 year = 365 days

 static double  minutesToSeconds(double minutes)
 Returns number of seconds from minutes, 1 minute = 60 seconds

 static double  hoursToSeconds(double hours)
 Returns number of seconds from hours, 1 hour = 60 minutes

 static double  daysToSeconds(double days)
 Returns number of seconds from days, 1 day = 24 hours 

 static double  yearsToSeconds(double years)
 Returns number of seconds from hours, 1 year = 365 days

Facts
● Use double literals in your conversion calculations
● Your Time class implementation should not have a main method.
● NO   Scanner for input & NO System.out for output!

Input
The Time class will be accessed by an external Java Application within Autolab. This Java app will send 
data in as arguments into each of the methods parameters.

Output
The Time class should return the correct data calculations back to the invoking client code 

 Sample Method Calls  Sample Method Returns  (Not Printouts)

 secondsToMinutes(1);
 secondsToHours(1);
 secondsToDays(1);
 secondsToYears(1);
 minutesToSeconds(1.0);
 hoursToSeconds(1.0);
 daysToSeconds(1.0);
 yearsToSeconds(1.0);

 0.016666666666666666
 2.777777777777778E-4
 1.1574074074074073E-5
 3.1709791983764586E-8
 60.0
 3600.0
 86400.0
 3.1536E7

Problem 3: Cooking (10 points) Make API



(API design) Java is an extensible language, which means you can expand the programming language 
with new functionality by adding new classes. You're tasked to implement a Cooking class for Java that 
includes the following API (Application Programming Interface): 

Cooking Method API:

 Modifier and Type  Method and Description

 static double  teaspoonsToTablespoons(double teaspoons)
 Returns number of TBSPs from TSP, 1 tablespoon = 3 teaspoons

 static double  tablespoonsToTeaspoons(double tablespoons)
 Returns number of TSPs from TBSP, 1 tablespoon = 3 teaspoons

 static double  tablespoonsToCups(double tablespoons)
 Returns number of CUPs from TBSP, 1 cup = 16 tablespoons

 static double  cupsToTablespoons(double cups)
 Returns number of TBSPs from CUPs, 1 cup = 16 tablespoons

 static double  ouncesToCups(double ounces)
 Returns number of CUPs from OUNCEs, 1 cup = 8 ounces

 static double  cupsToOunces(double cups)
 Returns number of OUNCEs from CUPs, 1 cup = 8 ounces

 static double  cupsToPints(double cups)
 Returns number of PINTs from CUPs, 1 pint = 2 cups

 static double  pintsToCups(double pints)
 Returns number of CUPs from PINTs, 1 pint = 2 cups 

Facts
● Your Cooking class implementation should not have a main method.
● NO   Scanner for input & NO System.out for output!

Input
The Cooking class will be accessed by an external Java Application within Autolab. This Java app will 
send data in as arguments into each of the methods parameters.

Output
The Cooking class should return the correct data calculations back to the invoking client code 

 Sample Method Calls  Sample Method Returns  (Not Printouts)

 teaspoonsToTablespoons(1.0);
 tablespoonsToTeaspoons(1.0);
 tablespoonsToCups(1.0);
 cupsToTablespoons(1.0);
 ouncesToCups(1.0);
 cupsToOunces(1.0);
 pintsToCups(1.0);
 cupsToPints(1.0);

 0.3333333333333333
 3.0
 0.0625
 16.0
 0.125
 8.0
 2.0
 0.5

Problem 4: Temperature (10 points) Make API



(API design) Java is an extensible language, which means you can expand the programming language 
with new functionality by adding new classes. You're tasked to implement a Temperature class for Java 
that includes the following API (Application Programming Interface): 

Temperature Method API:

 Modifier and Type  Method and Description

 static double  celsiusToFahrenheit(double celsius)

 Returns degrees Fahrenheit from degrees Celsius, F=
9
5
C+32 

 static double  celsiusToKelvin(double celsius)
 Returns degrees Kelvin from degrees Celsius, K=C+273.15

 static double  fahrenheitToCelsius(double fahrenheit)

 Returns degrees Celsius from degrees Fahrenheit, C=
5
9
(F−32)

 static double  fahrenheitToKelvin(double fahrenheit)

 Returns degrees Kelvin from degrees Fahrenheit, K=
5
9
(F+459.67)

 static double  kelvinToFahrenheit(double kelvin)

 Returns degrees Fahrenheit from degrees Kelvin, F=
9
5
K−459.67

 static double  kelvinToCelsius(double kelvin)
 Returns degrees Celsius from degrees Kelvin, C=K−273.15

Facts
● Your Temperature class implementation should not have a main method.
● NO   Scanner for input & NO System.out for output!

Input
The Temperature class will be accessed by an external Java Application within Autolab. This Java app 
will send data in as arguments into each of the methods parameters.

Output
The Temperature class should return the correct data calculations back to the invoking client code 

 Sample Method Calls  Sample Method Returns  (Not Printouts)

 celsiusToFahrenheit(1.0);
 celsiusToKelvin(1.0);
 fahrenheitToCelsius(1.0);
 fahrenheitToKelvin(1.0);
 kelvinToFahrenheit(1.0);
 kelvinToCelsius(1.0);

 33.8
 274.15
 -17.22222222222222
 255.92777777777778
 -457.87
 -272.15

Problem 5: Autocorrect (10 points) Use API



(Text Processing) You've just been hired by Apple to implement a new autocorrect feature in their text 
messenger app for the iPhone XX . The innovative idea behind this improved autocorrect feature is that 
Apple will use each individual's personal data to construct a custom dictionary for each and every user. 
Your autocorrect software must scan a line of user text and then use that custom dictionary to look for 
certain misspellings and replace them with the suggested spelling. So given a line of text, your software 
must replace keywords with new replacement words. Your autocorrect program is provided with this 
custom dictionary, which is given as a sequence of keywords and associated values, where the first word 
is the misspelling and the second term is the proper spelling.

Facts
● Java String class has a replace method in its API

○ https://docs.oracle.com/javase/10/docs/api/java/lang/String.html   
● Your solution should  have a main method.
● Use   Scanner for input & Use System.out for output!

Input
The first line of input is the number of test cases. Each test case consists of two lines of input. The first 
line of each test case represents the user's inputted text message as a String. The second line represents
the custom dictionary consisting of a String of multiple key-value pairs separated by spaces.

Output
The software should print the new message replacing the key terms with the appropriate replacement 
terms.

 Sample Input  Sample Output

 3
 Helo Wolrd
 Helo Hello Wolrd World
 yuDodat?
 y Why u You dat That
 h3110 70 411
 3 e 1 l 0 o 4 a 7 t

 Hello World
 WhyYouDoThat?
 hello to all 

Problem 6: Log It (10 points)        Use API



(Data Structure Algorithms) High-Low is a simple number guessing game where one player thinks of a 
random integer number between 0 to some maximum value and another player attempts to guess that 
number. With each turn, player one tells player two whether their guess was correct, too high, or too low. 
The optimal strategy for playing this game is to select the middle value between the largest and smallest 
possible numbers. In Computer Science, this strategy is called a Binary Search Algorithm. Binary search 
algorithms eliminate half the possible search space with each pass. Your task is to determine the 
maximum number of tries it takes to guess the number correctly using the Binary Search algorithm. This 
can be determined by taking the log2 value of the maximum number. Since this result represents the max
number of guesses round any fractional result up to the next highest integer. 

Facts

● Log2(number) is calculated using guesses=
log❑(max number)

log(2)
● Java Math class contains log and ceil methods

○ https://docs.oracle.com/javase/10/docs/api/java/lang/Math.html   
● Your solution should  have a main method.
● Use   Scanner for input & Use System.out for output!

Input
The first line of input represents the number of test cases. Each case contains one positive integer 
number that represents the maximum numbered value in the High-Low game.

Output
Print the integer that represents the maximum number of guesses it would take to find the secret number 
using binary search algorithm. 

 Sample Input  Sample Output

 4
 10
 100
 1000
 10000

 4
 7
 10
 14

Problem 7: Distance (10 points)   Use API
(Data Science)  Data Science is an emergent field from Computer Science with applications in almost 
every domain including finances, medical research, entertainment, retail, advertising, and insurance. The 



role of a data analyst is to aggregate data points and make conclusions based on how that data clusters 
together. Fundamentally, this is how Pandora selects what song to play next, how Netflix determines what
shows to recommend next, how Amazon chooses which products to promote together, how banks 
determine whether to issue a loan, and how hedge companies decide which stocks to invest into. One 
critical component that empowers data analysts to make such predictions is to determine how close or far
two data points are in relation to one another. This is accomplished using Trigonometry, a field of study in 
mathematics which observes the relationships of the sides and angles of triangles. By mapping the data 
points onto a 2d chart, it is then possible to use the distance formula (pythagorean theorem) to calculate 
the geometric distance between these two points. Your task in this problem is to calculate the distance 
between two points.  

Facts
● Distance formula: distance=√❑

● Java Math class contains sqrt and pow methods
○ https://docs.oracle.com/javase/10/docs/api/java/lang/Math.html   

● Your solution should  have a main method.
● Use   Scanner for input & Use System.out for output!

Input
The first line of input is the number of test cases. Each line afterwards contains four double values. The 
first two values represent the first point's coordinates as (x1,y1). The second set of values represent the 
second point's coordinates as (x2,y2).

Output
Print the distance between the two points as a double type. Use System.out.println() on your 
result.

 Sample Input  Sample Output

 3
 0 0 2 2
 -1 -1 1 1
 0 0 0.5 0.5

 2.8284271247461903
 2.8284271247461903
 0.7071067811865476

Problem 8: Enemy Move (10 points) Use API
(Game Development) You're leading the development of the highly anticipated game, Z3ldar 3. You've 
been challenged to implement the enemy movement within the game. Each game update, the enemy 
tries to move toward the player. Enemies movements are limited by their speed. If the enemy speed is 
greater than the distance from the player, then the enemy moves to the player's coordinates and attacks. 
However, if the enemy speed is less than the distance to the player, then the enemy moves in shortest 



path toward the player.  The enemy's location is tracked by (x1,y1) values and the player's location is 
tracked by (x2,y2) values. Given the current position of the enemy, the player position, and the enemy 
speed you must determine the new position of the enemy. 

Facts
● Distance formula: distance=√❑

● Enemy's new x coord formula: dx=x1+
speed
distance

(x2−x1) ,only if enemy cannot reach player. 

● Enemy's new y coord formula: dy= y1+
speed
distance

( y2− y1) ,only if enemy cannot reach player.

● Java Math class contains sqrt and pow methods
○ https://docs.oracle.com/javase/10/docs/api/java/lang/Math.html   

● Your solution should  have a main method.
● Use   Scanner for input & Use System.out for output!

Input
The first input is a positive integer representing the number of test cases. Each test case contains five 
non-negative double values. The first two inputs represents the enemy (x1,y1) position (start). The third 
number represents the enemy's speed. The last two inputs represent the player (x2,y2) position (end).   

Output
The program must display the final enemy x,y position after moving. The x,y coords should be displayed 
with one precision point. Terminate each set of coordinates with a new line (\n) character.

 Sample Input  Sample Output

 3
 0 0 4 10 10
 -1 -1 2 1 1
 0.0 0.0 10 1.0 1.0

 x=2.8, y=2.8
 x=0.4, y=0.4
 x=1.0, y=1.0


