
(Lab 5) Problem Set 3:
Methods, Classes, & APIs: Overloading

P3 Solutions limited in scope to:

● P1 Concepts
● P2 Concepts

● Methods Declarations
○ Pass data in
○ Return data out
○ Method overloading

● Method Invocations
○ Use Java API methods
○ Build API Util classes

Submission Rules:

1. Submissions must be zipped into a handin.zip file. Each problem must be implemented in its
own class file. Use the name of the problem as the class name.

2. You must use standard input and standard output for ALL your problems. It means that the
input should be entered from the keyboard while the output will be displayed on the screen.

3. Your source code files should include a comment at the beginning including your name and
that problem number/name.

4. The output of your solutions must be formatted exactly as the sample output to receive full
credit for that submission.

5. Compile & test your solutions before submitting.

6. Each problem is worth up to 10 points total. The breakdown is as follows: 2 points for
compiling, 3 points for correct output with sample inputs, 5 points for additional inputs.

7. This lab is worth a max total of: 40 points. You can complete as many problems as you like,
but cannot receive more than 40 points towards the lab grade. All points in excess of that are for
bragging rights. (Check the scoreboard to see how you did!)

8. Submission:

● You have unlimited submission attempts until the deadline passes

● You'll receive your lab grade immediately after submitting

● IMPORTANT: if your grade is lower than 70% when the deadline passes, then you must
attend a recitation session & get TA signoff to receive full credit for that lab challenge.

Problem 1: Datatype Util (10 points) Make API
(API design) Java contains several primitive data types built into the programming language. All
algorithms fundamentally rely on these types to model all possible software objects. You're tasked to
create a Datatype utility class that allows a developer to get the type of data for any primitive value.
Recall that Java is an extensible language, which means you can expand the programming language with
new functionality by adding new classes. Utility classes are typically helper classes that contain a
collection of related static methods. For example, Math is a utility class.

DataType Util Method API:

 Modifier and Type Method and Description

 static String getType(double data)
 Returns "double" as a String

 static String getType(float data)
 Returns "float" as a String

 static String getType(int data)
 Returns "int" as a String

 static String getType(long data)
 Returns "long" as a String

 static String getType(char data)
 Returns "char" as a String

 static String getType(boolean data)
 Returns "boolean" as a String

 static String getType(String data)
 Returns "String" as a String

Facts
● Your DatatypeUtil class implementation should not have a main method.
● NO Scanner for input & NO System.out for output!

Input
The DatatypeUtil class will be accessed by an external Java Application within Autolab. This Java app
will send data in as arguments into each of the methods parameters.

Output
The DatatypeUtil class should return the correct data calculations back to the invoking client code

 Sample Method Calls Sample Method Returns (Not Printouts)

 getType(1.0);
 getType(1.0f);
 getType(1);
 getType(1L);
 getType('1');
 getType(true);
 getType("Hello");

 "double"
 "float"
 "int"
 "long"
 "char"
 "boolean"
 "String"

1

Problem 2: Radix Util (10 points) Make API
(API design) In mathematical numeral systems, the radix or base is the number of unique digits, including
the digit zero, used to represent numbers in a positional numeral system. For example, in the decimal
system (base 10), uses ten digits from 0 through 9. But it is not uncommon in computer science to also
use base 2, base 8, base 16 numbers. You're tasked to implement a Radix Utility class for Java that
includes the following API (Application Programming Interface). Recall that Java is an extensible
language, which means you can expand the programming language with new functionality by adding new
classes. Utility classes are typically helper classes that contain a collection of related static methods. For
example, Math is a utility class.

Radix Util Method API:

 Modifier and Type Method and Description

 static int base2(String binary)
 Returns decimal integer value given a String with a binary representation

 static String base2(int decimal)
 Returns a String with binary representation given a decimal integer value

 static int base8(String octal)
 Returns decimal integer value given a String with a octal representation

 static String base8(int decimal)
 Returns a String with octal representation given a decimal integer value

 static int base16(String hexadecimal)
 Returns decimal integer value given a String with a hexadecimal representation

 static String base16(int decimal)
 Returns a String with hexadecimal representation given a decimal integer value

Facts
● Java Integer class contains toString and parseInt methods that uses: number and radix

○ https://docs.oracle.com/javase/10/docs/api/java/lang/Integer.html
● Your RadixUtil class implementation should not have a main method.
● NO Scanner for input & NO System.out for output!

Input
The RadixUtil class will be accessed by an external Java Application within Autolab. This Java app will
send data in as arguments into each of the methods parameters.

Output
The RadixUtil class should return the correct data calculations back to the invoking client code

 Sample Method Calls Sample Method Returns (Not Printouts)

 base2("111");
 base2(7);
 base8("10");
 base8(8);
 base16("f");
 base16(15);

 7
 "111"
 8
 "10"
 15
 "f"

2

Problem 3: Logical Util (10 points) Make API
(API design) Java provides the basic logical operations: and (&&), or (||), exclusive-or (^), not (!). From
these basic logical operators, there are often more complex forms of logical expressions that are
commonly needed. You're tasked to implement a Logical Utility class for Java that includes the following
API (Application Programming Interface). Utility classes are typically helper classes that contain a
collection of related static methods. For example, Math is a utility class.

Logical Util Method API:

 Modifier and Type Method and Description

 static boolean thereExists(boolean p, boolean q, boolean r)
 Returns true if at least one condition is true

 static boolean forAll(boolean p, boolean q, boolean r)
 Returns true only if all conditions are true

 static boolean majority(boolean p, boolean q, boolean r)
 Returns true only if a majority of the conditions are true

 static boolean minority(boolean p, boolean q, boolean r)
 Returns true only if a majority of conditions are false

 static boolean implies(boolean p, boolean q)
 Returns true unless p is true and q is false. This is: p implies q

 static boolean implies(boolean p, boolean q, boolean r)
 Returns true unless both p,q are true and r is false. This is: p implies q implies r

Facts
● Your LogicalUtil class implementation should not have a main method.
● NO Scanner for input & NO System.out for output!

Input
The LogicalUtil class will be accessed by an external Java Application within Autolab. This Java app
will send data in as arguments into each of the methods parameters.

Output
The LogicalUtil class should return the correct data calculations back to the invoking client code

 Sample Method Calls Sample Method Returns (Not Printouts)

 thereExists(false, false, true);
 forAll(true, true, true)
 majority(true, true, false);
 minority(false,false,false);
 implies(true, false);
 implies(true, true, false);

 true
 true
 true
 true
 false
 false

3

Problem 4: Relational Util (10 points) Make API
(API design) Java provides the basic relational operations: < (greater than), <= (greater than or equal), >
(less than), >= (less than or equal). From these basic relational operators, there are often more complex
forms of relational expressions that are commonly needed. You're tasked to implement a Relational Utility
class for Java that includes the following API (Application Programming Interface). Utility classes are
typically helper classes that contain a collection of related static methods. For example, Math is a utility
class.

Relational Util Method API:

 Modifier and Type Method and Description

 static boolean isIncreasing(int x, int y, int z)
 Returns true if x is smaller than y and y is smaller than z, exclusive

 static boolean isDecreasing(int x, int y, int z)
 Returns true if x is larger than y and y is larger than z, exclusive

 static boolean isBetween(int x, int y, int z)
 Returns true if y is between x and z, inclusive

 static boolean isPositive(int x)
 Returns true if the number is positive

 static boolean isNegative(int x)
 Returns true if the number is negative

 static boolean overlaps(int min1, int max1, int min2, int max2)
 Returns true if two line segments, min to max, overlap with one another

Facts
● Your RelationalUtil class implementation should not have a main method.
● NO Scanner for input & NO System.out for output!

Input
The RelationalUtil class will be accessed by an external Java Application within Autolab. This Java
app will send data in as arguments into each of the methods parameters.

Output
The RelationalUtil class should return the correct data calculations back to the invoking client code

 Sample Method Calls Sample Method Returns (Not Printouts)

 isIncreasing(1,2,3);
 isDecreasing(3,2,1);
 isBetween(-1,0,1);
 isPositive(1);
 isNegative(-1);
 overlaps(0,1,-1,2);
 overlaps(0,1,2,3);

 true
 true
 true
 true
 true
 true
 false

4

Problem 5: Date Util (10 points) Make API
(API design) Dates and Times are commonly used in software to log the activity of data such as when it
was created, modified or accessed. However, Dates have no universal formatting scheme. They may be
represented using either a set of integers or as words. You're tasked to implement a Date Utility class for
Java that includes the following API (Application Programming Interface). Utility classes are typically
helper classes that contain a collection of related static methods. For example, Math is a utility class.

Date Util Method API:

 Modifier and Type Method and Description

 static String format(int month, int day, int year)
 Returns String of date, formatted as mm/dd/yyyy

 static String format(String date, int year)
 Returns String of date

 static String format(String month, int day, int year)
 Returns String of date, formatted as month dd yyyy

 static String format(String month, String day, String year)
 Returns String of date, formatted as month day year

Facts
● Java String class contains format methods that allows formatted Strings similar to printf

○ https://docs.oracle.com/javase/10/docs/api/java/lang/String.html
● Your DateUtil class implementation should not have a main method.
● NO Scanner for input & NO System.out for output!

Input
The DateUtil class will be accessed by an external Java Application within Autolab. This Java app will
send data in as arguments into each of the methods parameters.

Output
The DateUtil class should return the correct data calculations back to the invoking client code

 Sample Method Calls Sample Method Returns (Not Printouts)

 format(1,1,2000);
 format("Sept 30", 1999);
 format("October", 31, 2018);
 format("Oct", "31st", twenty-18);

 "01/01/2000"
 "Sept 30, 1999"
 "October 31, 2018"
 "Oct 31st, twenty-18"

5

Problem 6: String Util (10 points) Make API
(API design) All software rely on data modeling to represent the things and objects within the algorithm.
It's important that developers and end users can inspect the state of these data models to verify the
software's results. Humans read data as text, so it is important that developers can translate data into
text to evaluate the state. This is commonly done using a method to stringify the data.You're tasked to
implement a String Utility class for Java that includes the following API (Application Programming
Interface). Utility classes are typically helper classes that contain a collection of related static methods.
For example, Math is a utility class.

StringUtil Method API:

 Modifier and Type Method and Description

 static String toString(double data)
 Returns data as a String

 static String toString(float data)
 Returns data as a String

 static String toString(int data)
 Returns data as a String

 static String toString(long data)
 Returns data as a String

 static String toString(char data)
 Returns data as a String

 static String toString(boolean data)
 Returns data as a String

Facts
● Your StringUtil class implementation should not have a main method.
● NO Scanner for input & NO System.out for output!

Input
The StringUtil class will be accessed by an external Java Application within Autolab. This Java app
will send data in as arguments into each of the methods parameters.

Output
The StringUtil class should return the correct data calculations back to the invoking client code

 Sample Method Calls Sample Method Returns (Not Printouts)

 toString(1.0);
 toString(1.0f);
 toString(1);
 toString(1L);
 toString('1');
 toString(true);

 "1.0"
 "1.0"
 "1"
 "1"
 "1"
 "true"

6

Problem 7: Flip It (10 points)
(Text Processing) Reversing the order of letters in a String is a very common coding challenge
that appears in many hiring interviews. Consider how you could achieve this task strictly with a
Scanner object with the original text and concatenation onto an empty String.

Facts
● Java Scanner class has a method useDelimiter that can change how much text to

read at a time, consider changing to empty string "" as your delimiter.
● Scanner has a method that returns a boolean indicating whether a next value exists in

its inputstream (hasNext())
● Scanner objects can be initialized to to scan String data as input.
● Prepend the new letter in front of the existing text with concatenation.

Input
First line is the number of test cases. Each line thereafter is a line of text.

Output
For each test case, display the text in reverse.

Sample Input Sample Output

3
Hello World
12345
I can read this

dlroW olleH
54321
siht daer nac I

7

Problem 8: ASM Emulator (10 points)
(Assembly Programming) High-level programming languages such as Java must be translated into a low-
level assembly language (ASM) in order to be executed by the underlying computational hardware. Unlike
Java, ASM is very specific to the hardware. ASM syntax consists of only three types: opcodes, registers,
and literal values. The opcode refers to the instruction that the processor must perform. Registers
represent the available storage. Literal values are the integer numbers. You must implement a Simple
Pseudo ASM (SPASM) emulator based on the following specifications

ASM Emulator (Fields):

 Modifier and Type Method and Description

 private static
int

 eax
 general purpose 32-bit storage for int value, (extended accumulator register)

 private static
int

 ebx
 general purpose 32-bit storage for int value , (extended base register)

 private static
int

 ecx
 general purpose 32-bit storage for int value, (extended counter register)

 private static
int

 edx
 general purpose 32-bit storage for int value, (extended data register)

ASM Emulator (Methods):

 Modifier and Type Method and Description

 static void mov(String reg1, int val)
 moves int data into specified register via a String label ("eax", "ebx", "ecx", "edx")

 static void mov(String reg1, String reg2)
 moves data from register to register via String labels ("eax", "ebx", "ecx", "edx")

 static void add(String reg1, int val)
 adds value with specified register, outputs result to accumulator (eax)

 static void add(String reg1, String reg2)
 adds the values from two registers, outputs result to accumulator (eax)

 static void imul(String reg1, int val)
 multiplies a value with specified register, outputs result to accumulator (eax)

 static void imul(String reg1, String reg2)
 multiples the values from two registers, outputs result to accumulator (eax)

 static void cmp(String reg1, int val)
 compares value to register, (0=false, 1=true) , outputs result to accumulator (eax)

 static void cmp(String reg1, String reg2)
 compares two registers, (0=false, 1=true) , outputs result to accumulator (eax)

 static void call(String proc, String reg1)
 call to external procedure, "PRINT" to console value in a specified register

Facts

8

● Assembly code uses only four fixed storage locations (i.e. variables) to hold all data values which
are represented in this emulator with static fields.

○ eax, ebx, ecx, edx
● Assembly instructions are called opcodes which are represented in this emulator with static

methods.
● The call opcode in assembly invokes procedures (i.e. methods). This emulator should have a

"PRINT" method that uses System.out to display the contents of a register.
● Your ASMEmulator class implementation should not have a main method.
● NO Scanner for input

Input
The ASMEmulator class will be accessed by an external Java Application within Autolab. This Java app
will send data in as arguments into each of the methods parameters.

Output
The ASMEmulator class should only display the state of one of its registers when the call method is
invoked with the parameters "PRINT", and one of the register names: "eax", "ebx", "ecx", "edx"

 Sample Input Sample Output

 MOV ecx 3
 MOV ebx 5
 CALL PRINT eax
 ADD ecx ebx
 CALL PRINT eax
 IMUL eax 2
 CALL PRINT eax
 CMP eax 16
 CALL PRINT eax

 [eax]: 0
 [eax]: 8
 [eax]: 16
 [eax]: 1

9

