
(Lab 6) Problem Set 4:
Containers: Arrays & Lists

P3 Solutions limited in scope to:
● P1 Concepts
● P2 Concepts
● P3 Concepts

● Arrays
○ Passing data in
○ Returning data out

● ArrayLists
○ Use Java API methods
○

Submission Rules:

1. Submissions must be zipped into a handin.zip file. Each problem must be implemented in its
own class file. Use the name of the problem as the class name.

2. You must use standard input and standard output for ALL your problems. It means that the
input should be entered from the keyboard while the output will be displayed on the screen.

3. Your source code files should include a comment at the beginning including your name and
that problem number/name.

4. The output of your solutions must be formatted exactly as the sample output to receive full
credit for that submission.

5. Compile & test your solutions before submitting.

6. Each problem is worth up to 10 points total. The breakdown is as follows: 2 points for
compiling, 3 points for correct output with sample inputs, 5 points for additional inputs.

7. This lab is worth a max total of: 40 points. You can complete as many problems as you like,
but cannot receive more than 40 points towards the lab grade. All points in excess of that are for
bragging rights. (Check the scoreboard to see how you did!)

8. Submission:

● You have unlimited submission attempts until the deadline passes

● You'll receive your lab grade immediately after submitting

● IMPORTANT: if your grade is lower than 70% when the deadline passes, then you must
attend a recitation session & get TA signoff to receive full credit for that lab challenge.

Problem 1: Array Util (10 points) Part 1: Reverse Array
(Data Structure algorithms) Arrays contain collections of related data values. An important component
involving arrays is the reordering of its internal data values, a process commonly known as sorting.
Sorting may be more formally defined as modifying the position of elements based on a set of rules or
criteria. In this problem you must reverse the order of elements within in the array. This is a trivial form of
sort as it reorders all elements based on their position in array and not the value.

Array Util Method API:
 Modifier and Type Method and Description
 static void reverse(String[] array)

 Reverses the elements within a String array

Facts
● Implement this method in the same ArrayUtil class as Problems 1,2,3,4 5,6
● No return is necessary because the array is passed into the method by reference
● Your ArrayUtil class implementation should not have a main method.
● NO Scanner for input & NO System.out for output!

Input
The ArrayUtil class will be accessed by an external Java Application within Autolab. This Java app will
send data in as arguments into each of the methods parameters.

Output
The ArrayUtil class should return the correct data calculations back to the invoking client code

 Sample Method Calls Sample Method Results (Not Printouts)
 String[] arr = {"a","b","c","d","e"};
 ArrayUtil.reverse(arr);

 {"e","d","c","b","a"}

Problem 2: Array Util (10 points) Part 2: Array Resize
(Data Structure algorithms) ArrayList is a class in the java.util package that provides much more
functionality than standard arrays. One powerful feature of ArrayList is that they can dynamically
resize themselves, whereas a basic array has a fixed length determined during its initialization.
ArrayList resize by creating a new Array twice the size of their original array and then copy their values
to the new bigger array. Implement a resize method within your ArrayUtil class as specified in the
API below.

Array Util Method API:
 Modifier and Type Method and Description
 static
String[]

 resize(String[] array)
 Returns new array with the same elements as original but that's twice the length

Facts
● Implement this method in the same ArrayUtil class as Problems 1,2,3,4 5,6
● A return is required because a new array is created in memory
● Your ArrayUtil class implementation should not have a main method.
● NO Scanner for input & NO System.out for output!

Input
The ArrayUtil class will be accessed by an external Java Application within Autolab. This Java app will
send data in as arguments into each of the methods parameters.

Output
The ArrayUtil class should return the correct data calculations back to the invoking client code

 Sample Method Calls Sample Method Returns (Not Printouts)
 String[] arr = {"a","b","c"};
 arr = ArrayUtil.resize(arr);

 {"a","b","c",null,null,null}

Problem 3: Array Util (10 points) Part 3: Add Item
(Data Structure algorithms) ArrayList is a class in the java.util package that provides much more
functionality than standard arrays. ArrayList has an add method which appends a new item to the end
of its list. If the array is too small to add a new item, then it should first be resized, and then the new item
should be added. Implement an add method within your ArrayUtil class as specified in the API below.

Array Util Method API:
 Modifier and Type Method and Description
 static
String[]

 add(String element, String[] array)
 Returns an array with new element inserted at end, resize array if too small

Facts
● iterate array for a null reference and set item into that index.
● A return is required because a new array might need to be generated when adding a new item
● Implement this method in the same ArrayUtil class as Problems 1,2,3,4 5,6
● Your ArrayUtil class implementation should not have a main method.
● NO Scanner for input & NO System.out for output!

Input
The ArrayUtil class will be accessed by an external Java Application within Autolab. This Java app will
send data in as arguments into each of the methods parameters.

Output
The ArrayUtil class should return the correct data calculations back to the invoking client code

 Sample Method Calls Sample Method Returns (Not Printouts)
 String[] arr = {"a","b","c"};
 arr = ArrayUtil.add("d", arr);

 {"a","b","c","d",null,null}

Problem 4: Array Util (10 points) Part 4: Array Contains
(Data Structure algorithms) ArrayList is a class in the java.util package that provides much more
functionality than standard arrays. A useful method in ArrayList is the contains method which
reports true/false whether the list contains an element or not. Implement a similar contains method
within your ArrayUtil class as specified in the API below.

Array Util Method API:
 Modifier and Type Method and Description
 static boolean contains(String element, String[] array)

 Returns true if the array contains the given String, otherwise false

Facts
● Java String class contains equals method that allows checks for String equality

○ https://docs.oracle.com/javase/10/docs/api/java/lang/String.html
● Implement this method in the same ArrayUtil class as Problems 1,2,3,4 5,6
● Your ArrayUtil class implementation should not have a main method.
● NO Scanner for input & NO System.out for output!

Input
The ArrayUtil class will be accessed by an external Java Application within Autolab. This Java app will
send data in as arguments into each of the methods parameters.

Output
The ArrayUtil class should return the correct data calculations back to the invoking client code

 Sample Method Calls Sample Method Returns (Not Printouts)
 String[] arr = {"a","b","c"};
 ArrayUtil.contains("b",arr);
 ArrayUtil.contains("d",arr);

 true
 false

Problem 5: Array Util (10 points) Part 5: MinMax By
Value
(Data Structure algorithms) Given an array of integer values, create methods that return the minimum
integer value and the maximum integer value.

Array Util Method API:
 Modifier and Type Method and Description
 static int findMinValue(int[] array)

 Returns the min value from the array
 static int findMaxValue(int[] array)

 Returns the max value from the array

Facts
● Implement this method in the same ArrayUtil class as Problems 1,2,3,4 5,6
● Your ArrayUtil class implementation should not have a main method.
● NO Scanner for input & NO System.out for output!

Input
The ArrayUtil class will be accessed by an external Java Application within Autolab. This Java app will
send data in as arguments into each of the methods parameters.

Output
The ArrayUtil class should return the correct data calculations back to the invoking client code

 Sample Method Calls Sample Method Returns (Not Printouts)
 int[] arr = {1,2,3,3,2,1};
 ArrayUtil.findMinValue(arr);
 ArrayUtil.findMaxValue(arr);

 1
 3

Problem 6: Array Util (10 points) Part 6: MinMax By Index
(Data Structure algorithms) Given an array of integer values, create methods that return an array of the
indexes where the minimum integer values occur and an array of the indexes where the maximum integer
values occur. If a max or min value only occur once, then the array need only hold one index.

Array Util Method API:
 Modifier and Type Method and Description
 static int[] findMinIndex(int[] array)

 Prints the min value in the array
 static int[] findMaxIndex(int[] array)

 Prints the max value in the array

Facts
● Implement this method in the same ArrayUtil class as Problems 1,2,3,4 5,6
● Your ArrayUtil class implementation should not have a main method.
● NO Scanner for input & NO System.out for output!

Input
The ArrayUtil class will be accessed by an external Java Application within Autolab. This Java app will
send data in as arguments into each of the methods parameters.

Output
The ArrayUtil class should return the correct data calculations back to the invoking client code

 Sample Method Calls Sample Method Returns (Not Printouts)
 int[] arr = {1,2,3,3,2,1};
 ArrayUtil.findMinIndex(arr);
 ArrayUtil.findMaxIndex(arr);

 {0,5}
 {2,3}

Problem 7: Caeser Cypher (10 points)
(Cyber Security) In cryptography, a shifting cipher, also known as Caesar's cipher, is one of the simplest
and most widely known encryption techniques. It is a type of substitution cipher in which each character in
the message is replaced by a character some fixed number of positions up the alphabet. This a
symmetric scheme as the same key is used for both encryption and decryption. This means the key
shouldn't be made public.

Caesar Cypher Method API:
 Modifier and Type Method and Description
 static String encrypt(String message, int key)

 Returns encrypted message shifting characters up by key value
 static String decrypt(String message, int key)

 Returns decrypted message shifting characters down by key value

Facts
● Java String class contains toCharArray method that converts String into char array

○ https://docs.oracle.com/javase/10/docs/api/java/lang/String.html
● char data is also numerical data that support arithmetic operations
● After mathematical operations, You may cast int to char to convert number into ASCII
● Concatenation operations may convert char data into String data
● Your CeaserCypher class implementation should not have a main method.
● NO Scanner for input & NO System.out for output!

Input
The CeaserCypher class will be accessed by an external Java Application within Autolab. This Java app
will send data in as arguments into each of the methods parameters.

Output
The CeaserCypher class should return the correct data calculations back to the invoking client code

 Sample Method Calls Sample Method Returns (Not Printouts)
 CeaserCypher.encrypt("Hello World",13);
 CeaserCypher.decrypt("Uryy|-d|\177yq",13);

 "Uryy|-d|\177yq"
 "Hello World"

Problem 8: Vector Util (10 points)
(Linear Algebra) Linear Algebra is a domain in mathematics that defines operations on entire fields of
data, instead of individual numbers. These fields of data are called vectors or matrices, and are
represented as an ordered set of numbers in the form of v1 = (x,y,z,...). For instance, an (x,y) coordinate
is an example of a vector. Matrix operations have many applications including Scientific Computing, Data
Science, Computer Graphics, Physics Simulations, Machine Learning, Image Processing, and many
more.

A common operation is the dot product which defines how to multiply two vectors together. in the case of
one dimensional vectors, i.e. a single sequence of numbers. (x,y,z,..) You simply multiply the values at
each index together and then sum all of the resulting products together to derive a final result.

In other words,
Given a vector, v1 = (a,b,c) and vector, v2 = (x,y,z)

then v1 * v2 = ax + by + cz

So for example:
(1,2,3) * (4,5,6)

= 1*4 + 2*5 + 3*6
= 4 + 10 + 18

= 32

Vector Util Method API:
 Modifier and Type Method and Description
 static double dotProduct(double[] vector1, double[] vector2)

 Returns the dot product between matrix1 and matrix2

Facts
● Both vectors must have the same number of elements
● Your VectorUtil class implementation should not have a main method.
● NO Scanner for input & NO System.out for output!

Input
The VectorUtil class will be accessed by an external Java Application within Autolab. This Java app
will send data in as arguments into each of the methods parameters.

Output
The VectorUtil class should return the correct data calculations back to the invoking client code

 Sample Method Calls Sample Method Returns (Not Printouts)
 double[] a = {1,2,3};
 double[] b = {4,5,6};
 VectorUtil.dotProduct(a,b);

 32.0

Problem 9: Conway Game Of Life (10 points)
(Bioinformatics) . Simulation. The game is a zero-player game, meaning that its evolution is determined
by its initial state, requiring no further input. Game of Life is a 2d grid of square cells, each of which is in
one of two possible states, alive or dead. Every cell interacts with its eight neighbours, which are the cells
that are horizontally, vertically, or diagonally adjacent. The grid wraps around edges such that all cells
have 8 neighbors. At each step in time, the following transitions occur:

● Any live cell with fewer than two live neighbors dies, as if by underpopulation.
● Any live cell with two or three live neighbors lives on to the next generation.
● Any live cell with more than three live neighbors dies, as if by overpopulation.
● Any dead cell with exactly three live neighbors becomes a live cell, as if by reproduction.

Implement a method, that given the current grid of living/dead cells, determine the next generation of the
grid using the rules from above.

Conway Game Of Life Method API:
 Modifier and Type Method and Description
 static boolean[]
[]

 update(boolean[][] grid)
 Returns new grid with the next lifecycle based on this current grid

Facts
● Each cell uses the 8 adjacencies from the given array to determine if its new state
● Grid wrapping logic can be achieved using the Math.floorMod method for indexing
● Your ConwayGameOfLife class implementation should not have a main method.
● NO Scanner for input & NO System.out for output!

Input
The ConwayGameOfLife class will be accessed by an external Java Application within Autolab. This
Java app will send data in as arguments into each of the methods parameters.

Output
The ConwayGameOfLife class should return the correct data calculations back to the invoking client
code

 Sample Method Calls Sample Method Returns (Not Printouts)
 boolean[][] grid =
 {
 {true, false, false},
 {false, true, true },
 {false, true, true}
 };

 ConwayGameOfLife.update(grid);

 [
 [false, false, false],
 [false, false, false],
 [false, false, false]
]

