
(Lab 7) Problem Set 5:
Containers: Objects & Classes

P3 Solutions limited in scope to:

 P1 Concepts
 P2 Concepts
 P3 Concepts
 P4 Concepts

 Designing Objects
 instance variables
 instance methods
 constructors
 UML diagrams

 Using Objects
 Instantiation
 Storing objects into variables
 invoking instance methods
 using Java API

Submission Rules:

1. Submissions must be zipped into a handin.zip file. Each problem must be implemented in its
own class file. Use the name of the problem as the class name.

2. You must use standard input and standard output for ALL your problems. It means that the
input should be entered from the keyboard while the output will be displayed on the screen.

3. Your source code files should include a comment at the beginning including your name and
that problem number/name.

4. The output of your solutions must be formatted exactly as the sample output to receive full
credit for that submission.

5. Compile & test your solutions before submitting.

6. Each problem is worth up to 10 points total. The breakdown is as follows: 2 points for
compiling, 3 points for correct output with sample inputs, 5 points for additional inputs.

7. This lab is worth a max total of: 40 points. You can complete as many problems as you like,
but cannot receive more than 40 points towards the lab grade. All points in excess of that are for
bragging rights. (Check the scoreboard to see how you did!)

8. Submission:

 You have unlimited submission attempts until the deadline passes

 You'll receive your lab grade immediately after submitting

 IMPORTANT: if your grade is lower than 70% when the deadline passes, then you must
attend a recitation session & get TA signoff to receive full credit for that lab challenge.

Problem 1: Fraction (10 points)
(Mathematics) Create a new class that represents fractional numbers as a pair of integers: numerator and
denominator. Fractional numbers should support the basic arithmetic operations: multiply, divide, add,
subtract. Fractional numbers should also simplify their integer representations as the smallest possible
values.

UML Class Diagram:

Fraction

- numerator: int
- denominator: int

+ constructor (numerator: int, denominator: int)
+ add(other: Fraction): Fraction
+ subtract(other: Fraction): Fraction
+ multiply(other: Fraction): Fraction
+ divide(other: Fraction): Fraction
+ simplify(numerator: int, denominator: int): Fraction
+ getNumerator(): int
+ getDenominator(): int
+ toString(): String

Fraction Constructor Summary:

 Constructor Description

 Fraction(int numerator, int
denominator)

 Creates a fraction object from two integer values.
 The numerator should carry the +/- sign and
 the denominator should be positive

Fraction Method API:

 Modifier and Type Method and Description

 Fraction add(Fraction other)
 Returns new fraction object based on this fraction added to other fraction

 Fraction divide(Fraction other)
 Returns new fraction object based on this fraction divided by other fraction

 int getDenominator()
 Returns the denominator

 int getNumerator()
 Returns the numerator

 Fraction multiply(Fraction other)
 Returns new fraction object based on this fraction multiplied by other fraction

 Fraction simplify(int numerator, int denominator)
 Returns a fraction of simplified form using the given integer arguments

 Fraction subtract(Fraction other)
 Returns new fraction object based on this fraction subtracted from other fraction

 String toString()
 Returns a text representation of fraction in form of: "(numerator/denominator)"

Facts

 Fraction should contain arithmetic methods: add,subtract,multiply,divide
 add:

■ numerator = numerator1 * denominator2 + numerator2 *
denominator1

■ denominator = denominator1 * denominator2
■ Then simplify

 subtract:
■ numerator = numerator1 * denominator2 - numerator2 *

denominator1
■ denominator = denominator1 * denominator2
■ Then simplify

 multiply:
■ numerator = numerator1 * numerator2
■ denominator = denominator1 * denominator2
■ Then simplify

 divide:
■ numerator = numerator1 * denominator2
■ denominator = denominator1 * numerator2
■ Then simplify

 Simplify should iterate on the value of the denominator to check if that value is evenly
divisible for both the denominator and numerator, if so then divide them both by that value.
Continue this process until you decrement down to 1.

Software Architecture:
The Fraction class is designed to be instantiated by an external application file to generate new
Fraction objects.

UML Object Diagram

Tester Files:
Use the FractionTester.java file to test your implementation. Compare your results with the
fractions.txt file.

 Sample Method Calls Sample Method Results

 Fraction f1 = new Fraction(1,2);
 Fraction f2 = new Fraction(1,3);
 Fraction f3 = f1.add(f2);
 System.out.printf("%s+%s=%s")

 (1/2)+(1/3)=(5/6)

Problem 2: Dungeon Crawl (10 points)
(Game Dev) Build a Room class that can be used to construct dungeons that allows a player to navigate
a text-based world and explore its environments. Use the Unified Modeling Language (UML) diagram
below for constructing your class file.

UML Class Diagram:

Room

- name: String
- description: String
- north: Room
- east: Room
- west: Room
- south: Room

+ constructor (name: String, description: String)
+ setExits(n:Room, e:Room, w:Room, s:Room)
+ getExits(): String
+ getName(): String
+ getNorth(): Room
+ getEast(): Room
+ getWest(): Room
+ getSouth(): Room
+ toString(): String

Room Constructor Summary:

 Constructor Description

 Room(String name, String
description)

 Creates a Room object from two Strings.

Room Method API:

 Modifier and Type Method and Description

 Room getEast()
 Returns the room east of this one, if no such room exists, then null is returned.

 String getExits()
 Returns a String of this room's exits with both the exit direction & the room's name

 String getName()
 Returns a String with this room's name.

 Room getNorth()
 Returns the room north of this one, if no such room exists, then null is returned

 Room getSouth()
 Returns the room south of this one, if no such room exists, then null is returned

 Room getWest()
 Returns the room west of this one, if no such room exists, then null is returned

 void setExits(Room n, Room e, Room w, Room s)
 Sets all four exits for this room: north, east, west, south

 String toString()
 Returns a text representation of this room with name, description, and exits

Facts

 Each Room object contains references to up to four other Room objects
 toString() should include the rooms's name, room's description, and the method getExits()

Software Architecture:
The Room class is designed to be instantiated by Dungeon class which is used by the Game class.
See the UML object diagram below:

UML Object Diagram

Tester Files:
Use the RoomTester.java file to test your implementation. Use the Game.java app to play a simple
version of a text-based exploration game using your Room class.

 Sample Method Calls Sample Method Results

 Room hall = new Room("Hall", "Its Dark.");
 Room bed = new Room("Bed", "Tiny room.");
 Room bath = new Room("Bath", "Toilets
here.");
 Room dine = new Room("Dining", "Table &
chairs");
 hall.setExits(bed, bath, dine, null);
 System.out.println(hall)

 [Hall]
 Its Dark.
 [N]orth: Bed
 [E]ast: Bath
 [W]est: Dining

Problem 3: Point2D (10 points)
(Data Analytics) A core modeling tool used by data scientists is that of 2d points. Points are most
common in generating graphs and are used to plot data across two axis, where given some observation x
we can map to a result y. But as common as points might be, they aren't a Java primitive data type. Build
a Point2D class that represents a geometric two dimensional point with an x-coordinate and a y-
coordinate. You should be able to move and calculate its distance from another point.

UML Class Diagram:

Point2D

- x: double
- y: double

+ constructor (x: double, y: double)
+ getX(): double
+ getY(): double
+ moveTo(x: double, y: double)
+ moveBy(dx: double, dy: double)
+ distance(other: Point2D): double
+ toString(): String

Point2D Constructor Summary:

 Constructor Description

 Point2D(double x, double y) Creates a Point2D object from two double values.

Point2D Method API:

 Modifier and Type Method and Description

 double distance(Point2D other)
 Returns the distance between between two points, uses the distance formula.

 double getX()
 Returns this point's x-coordinate.

 double getY()
 Returns this point's y-coordinate.

 void moveBy(double dx, double dy)
 moves point by dx units on x-axis & dy units on y-axis

 void moveTo(double x, double y)
 moves point to new position with given x, y values

 String toString()
 Returns a text representation of this point formatted as: (x,y)
 Decimal precision should be limited to the tenths place.

Facts
 distance formula: √❑

Software Architecture:

The Point2D class is designed to be instantiated by external classes and interact with other point
objects. See the UML object diagram below:

Tester Files:
Use the Point2DTester.java file to test your implementation.

 Sample Method Calls Sample Method Results

 Point2D p1 = new Point2D(1,1);
 System.out.printf("point1: %s\n",p1);
 Point2D p2 = new Point2D(4,3);
 System.out.printf("point2: %s\n",p2);
 double distance = p1.distance(p2);
 System.out.printf("distance: %f\
n",distance);

 point1: (1.0,1.0)
 point2: (4.0,3.0)
 distance: 3.605551

Problem 4: ATM Banking (10 points)
(Software Engineering) Digital account management systems in the dominant approach that most
companies provide services to their clients. You use such account based login systems for social media,
streaming entertainment services, shopping, banking, etc. Each of these systems must manage multiple
user accounts. You must create a Account class for use in an ATM system with the given specification .

UML Class Diagram:

Account

- count: int (static)
- name: String
- pin: String
- id: int
- balance: double

+ constructor (name: String, pin: String)
+ getName(): String
+ getID(): int
+ getBalance(): double
+ isPin(attempt: String): boolean
+ deposit(amount: double)
+ withdraw(amount: double)
+ toString(): String

Account Constructor Summary:

 Constructor Description

 Account(String name, String
pin)

 Creates Account object with given name and pin.
 Set balance to 0 & set id to count, then increment count.

Account Method API:

 Modifier and Type Method and Description

 void deposit(double amount)
 Adds amount to balance provided it is a positive value.

 double getBalance()
 Returns the dollar balance of this account

 int getID()
 Returns this account's id number

 String getName()
 Returns the person's name associated with this account

 boolean isPin(String attempt)
 Returns true if attempt matches pin otherwise false

 double withdraw(double amount)
 Subtracts amount from balance provided it is positive value and less than balance

 String toString()
 Returns a text representation of this account, formatted as:
 "Name: %s, Account ID: %d, Balance: $%.02f"

Facts

 Make sure to check that the inputs for deposit and withdraw are valid.
 Consider using String.format() in your toString()

Software Architecture:
The Account class is designed to be instantiated by ATM class which is used to make account objects.
See the UML object diagram below:

UML Object Diagram

Tester Files:
Use the AccountTester.java file to test your implementation. Use the ATM.java app to play a simple
simulation of an ATM banking system using your ATM class.

 Sample Method Calls Sample Method Results

 Account tim = new Account("Tim",
"1234");
 System.out.println(tim);
 Account ted = new Account("Ted",
"9999");
 System.out.println(ted);

 Name: Tim, Account ID: 0, Balance: $0.00
 Name: Ted, Account ID: 1, Balance: $0.00

Problem 5: Monster Factory (10 points)
(Game Dev) Create a Monster class that maintains a count of all monsters instantiated and includes a
static method that generates a new random monster object. In software engineering, a method that
generates new instances of classes based on configuration information is called the Factory pattern.

UML Class Diagram:

Monster

- name: String
- health: int
- strength: int
- xp: int

+ spawn(type:String): Monster
+ constructor (name: String, health: int, strength: int, xp:

int)
+ getName(): String
+ getHealth(): int
+ getStrength(): int
+ getXP(): int
+ takeDamage(damage: int)
+ attack(hero: Player)
+ toString(): String

Monster Constructor Summary:

 Constructor Description

 Monster(String name, int
health,
 int strength, int xp)

 Creates Monster object with given name, health, strength.
 and xp.

Monster Method API:

 Modifier and Type Method and Description

 void attack(Player hero)
 Monster attacks player, where player takes damage equal to monster strength.
 Display message: "%s attacks player for %d damage", name, strength

 int getHealth()
 Returns this monster's health

 String getName()
 Returns this monster's name

 int getStrength()
 Returns this monster's strength

 int getXP()
 Returns this monster's experience

 static Monster spawn(String type)
 Returns a monster object of given type for "goblin", "orc", or "troll"

 void takeDamage(int damage)
 health is decreased by given damage, but can't be a
negative

 String toString()

 Returns a text representation of this account, formatted as:
 "[%s] HP: %d, STR: %d", name, health, strength

Facts
 Monster types that may be spawned with following attribute values:

 goblin, name="goblin", health=60, strength=8, xp=1
 orc, name="orc", health=100, strength=12, xp=3
 troll, name="troll", health=150, strength=15, xp=5

 monster's attack() should invoke player's takeDamage() method.
 Consider using String.format() in your toString()

Software Architecture:
The Monster class is designed to be instantiated by Game class which is used to make Monster objects
and Player objects. See the UML object diagram below:

UML Object Diagram

Tester Files:
Use the MonsterTester.java file to test your implementation. Use the Game.java app to play a
simple game using your Monster class.

 Sample Method Calls Sample Method Results

 Monster goblin =
Monster.spawn("goblin");
 Monster orc = Monster.spawn("orc");
 Monster troll = Monster.spawn("troll");
 System.out.println(goblin);
 System.out.println(orc);
 System.out.println(troll);

 [goblin] HP:60, STR:8
 [orc] HP:100, STR:12
 [troll] HP:150, STR:15

Problem 6: RSA (10 points)
(Cyber Security) Use BigInteger API to implement RSA encryption. RSA is an asymmetric encryption
scheme, where a public key is used to encrypt data and a different, private key decrypts that data. RSA
public/private keys are generated from two prime numbers, typically very large ones.

UML Class Diagram:

RSA

- n: BigInteger
- e: BigInteger
- d: BigInteger

+ constructor (p: String, q: String)
- totient(p: BigInteger, q: BigInteger): BigInteger
- generateE(p: BigInteger, q: BigInteger): BigInteger
- generateD(e: BigInteger, totient: BigInteger): BigInteger
+ encrypt(message: String): String
+ decrypt(message: String): String

RSA Constructor Summary:

 Constructor Description

 RSA(String p, String
q)

 Converts p and q into Big Integers and sets the following attributes:
 n = p * q
 e = generate E (p, q)
 d = generate D (e, totient)

 RSA(String p, String
q,
 String e)

 Converts p,q,e into Big Integers and sets the following attributes:
 n = p * q,
 d = generate D (e, totient)

RSA Method API:

 Modifier and Type Method and Description

 BigInteger totient(BigInteger p, BigInteger q)
 Returns the totient which is calculated as: (p-1) * (q - 1), The totient represents
 the approximate number of primes that occur before the composite n = p * q

 BigInteger generateE(BigInteger p, BigInteger q)
 Returns a randomly-generated value for e, e must be prime and less than totient

 BigInteger generateD(BigInteger e, BigInteger totient)
 Returns a valid value for d, uses the multiplicative inverse to find d such that:
 (e * d) % totient == 1, Note: use an iterative approach to find a valid value for d

 String encrypt(String message)
 Returns an encrypted message using the following approach: Take each char in
 message, convert char to integer c, then find encrypted char = ce % n

 String decrypt(String message)
 Returns a decrypted message using the following approach: Take each char in
 message, convert char to integer c, then find decrypted char = cd % n

Facts
 BigInteger API: https://docs.oracle.com/javase/10/docs/api/java/math/BigInteger.html
 BigInteger contains arithmetic methods: add,subtract,multiply,mod,modPow
 BigInteger contains equals that checks for equality between two BigInteger objects
 BigInteger contains compareTo that compares two different BigInteger objects as follows:

 BigInteger < BigInteger → -1
 BigInteger = BigInteger → 0
 BigInteger > BigInteger → 1

 BigInteger contains nextProbablePrime that returns the next prime after the given number
 BigInteger contains intValue that converts a BigInteger value into an integer value
 BigInteger contains prebuilt constant values: BigInteger.ONE
 String contains toCharArray that converts a String into an array of char values

Software Architecture:
The RSA class is designed to be instantiated by an external application file to generate new RSA
encryption keys.

Tester Files:
Use the RSATester.java file to test your implementation.

 Sample Method Calls Sample Method Results

 RSA rsa = new RSA("19","79", "17");
 String message = "Hello World";
 message = rsa.encrypt(message);
 message = rsa.decrypt(message);

 ˠ ִӃӃ ʜ˙ ӃՉ˫ ˫҇

 Hello World

END

