
(Lab 8):
Containers: Objects & Classes II

P3 Solutions limited in scope to:

● P1 Concepts
● P2 Concepts
● P3 Concepts
● P4 Concepts

● Designing Objects
○ instance variables
○ instance methods
○ constructors
○ UML diagrams

● Using Objects
○ Instantiation
○ Storing objects into variables
○ invoking instance methods
○ using Java API

Submission Rules:

1. Submissions must be zipped into a handin.zip file. Each problem must be implemented in
its own class file. Use the name of the problem as the class name.

2. You must use standard input and standard output for ALL your problems. It means that
the input should be entered from the keyboard while the output will be displayed on the
screen.

3. Your source code files should include a comment at the beginning including your name
and that problem number/name.

4. The output of your solutions must be formatted exactly as the sample output to receive
full credit for that submission.

5. Compile & test your solutions before submitting.

6. Each problem is worth up to 10 points total.

7. This lab is worth a max total of: 30 points.

8. Submission:

● You have unlimited submission attempts until the deadline passes

● You'll receive your lab grade immediately after submitting

Problem 1: Email (10 points)
(Software design) Emails.

UML Class Diagram:

Email

- subject: String
- to: String
- from: String
- body: String

+ constructor (subject: String, to: String,from: String,
body:String)
+ constructor (subject: String, to: String,from: String)
+ setBody:
+ addToBody:
+ equals: boolean
+ getSubject: String
+ getTo: String
+ getFrom: String
+ getBody: String

Email Constructor Summary:

Constructor Description

Email(String subject, String to,
String from, String body)

Creates an email with a subject, a to, a from, and a
body.

Email(String subject, String to,
String from)

Creates an email with a subject, a to, and a from. Set
the body String as the empty String “”.

Email Method API:

Modifier and Type Method and Description

void setBody(String body)
Sets the email’s body to the given String.

void addToBody(String text)
Appends the text String to the end of this email’s body String.

boolean equals(Email other)
Returns true if the email has the same subject, to, from, and body Strings.

String getSubject()
Returns this email’s subject.

String getTo()
Returns this email’s to.

String getFrom()
Returns this email’s subject.

String getBody()
Returns this email’s body.

String toString()
Returns this email as a String separated by semicolons.
Example: “From: Me; To: Joe; Subject: Hw; Body: Hello”

Tester Files:
Use the EmailTester.java file to test your implementation. Compare your results with the email.txt
file.

Sample Method Calls Sample Method Results

Email x = new Email(“Hw”, “Joe”, “Me”, “Hello”);
Email y = new Email(“Hw2”, “Tony”, “You”, “Hi”);
x.equals(y);
x.toString()

“false”
“From: Me; To: Joe; Subject: Hw; Body:
Hello”

Problem 2: RGBColor (10 points)
(Software design) RGBColor. Red Green Blue color representations.

UML Class Diagram:

 RGBColor

- red: int
- green: int
- blue: int

+ constructor (red: int, green: int, blue: int)
+ equals: boolean
+ toString: String
+ toHex: String
+ getRed: int
+ getGreen: int
+ getBlue: int

RGBColor Constructor
Summary:

Constructor Description

RGBColor(int red, int green, int blue) Creates an RGBColor object with the given red, green,
blue values.

RGBColor Method API:

Modifier and Type Method and Description

boolean equals(RGBColor other)
Returns true if the RGBColor’s colors all are the same values. Returns false

otherwise.

String toString()
Returns the String representation of the RGBColor object as “rgb(red, green, blue)”

where red, green, and blue are their respective integer values.

String toHex()
Returns the String representation of the RGBColor object as “#redgreenblue”

where red, green, and blue are the hex values.

int getRed()
Returns this object’s red value.

int getGreen()
Returns this object’s green value.

int getBlue()
Returns this object’s blue value.

Facts
● String.format() converts an integer to its hexadecimal equivalent using “%x”
● String.format() allows us to pad the empty space with zeros by a set amount

(here the amount is 2) by saying %02x

○ https://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html
○ Example: String.format(“%x”, 15) would return “f”
○ Example: String.format(“%02x”, 15) would return “0f”

Tester Files:
Use the RGBColorTester.java file to test your implementation. Compare your results with the
rgbcolor.txt file.

Sample Method Calls Sample Method Results

RGBColor x = new RGBColor(99, 16, 0);
RGBColor y = new RGBColor(0, 0, 0);
boolean t = x.equals(y);
String dec = x.toString();
String hex = x.toHex();

“false”
“rgb(99,16,0)”
“#631000”

Problem 3: DNA (10 points)
(Bioinformatics)

UML Class Diagram:

DNA

- sequence: char[]

+ constructor (seq: char[])
+ getSequence: char[]
+ swap: DNA
+ equals: boolean
+ toString: String

DNA Constructor Summary:

Constructor Description

DNA(char[] sequence) Creates a new DNA object with the supplied sequence array.

DNA Method API:

Modifier and
Type

Method and Description

char[] getSequence()
Returns this DNA object’s sequence.

DNA swap(DNA other, int swapPoint)
Returns a new DNA object with this DNA object’s sequence before the swap point
and the other DNA object’s sequence from the swap point onward.

boolean equals(DNA other)
Returns true if this and the other DNA object’s sequences match.

String toString()
Returns the sequence as a line of characters.

Facts
● Our swap will take this DNA object and the other DNA object and create a new

DNA object with part of the sequence from this (the indexes up until the swap
point) and part of the sequence from the other (the indexes at and following
from the swap point). We are assuming both DNA object’s sequences are of the
same length.

Tester Files:
Use the DNATester.java file to test your implementation. Compare your results with the dna.txt file.

Sample Method Calls Sample Method Results

char[] first = {‘a’, ‘t’, ‘c’, ‘g’};
DNA d1 = new DNA(first);
char[] second = {‘t’, ‘c’, ‘a’, ‘a’}
DNA d2 = new DNA(second);
String out = d1.toString();
DNA nextDNA = d1.swap(d2, 2);
String newOut = nextDNA.toString();

“atcg”
“ataa”

	Submission Rules:
	Problem 1: Email (10 points)
	Problem 2: RGBColor (10 points)
	Problem 3: DNA (10 points)

