
Lab 09
Inheritance & Polymorphism

P6 Solutions limited in scope to:

 P1 Concepts
 P2 Concepts
 P3 Concepts
 P4 Concepts
 P5 Concepts

 Designing with Inheritance
 super/sub class
 is-a relationship
 polymorphism
 overriding methods

 Implementing with Inheritance
 super keyword
 abstract keyword
 interface keyword
 extends keyword
 implements keyword

Submission Rules:

1. Submissions must be zipped into a handin.zip file. Each problem must be implemented in its
own class file. Use the name of the problem as the class name.

2. You must use standard input and standard output for ALL your problems. It means that the
input should be entered from the keyboard while the output will be displayed on the screen.

3. Your source code files should include a comment at the beginning including your name and
that problem number/name.

4. The output of your solutions must be formatted exactly as the sample output to receive full
credit for that submission.

5. Compile & test your solutions before submitting.

6. Each problem is worth up to 10 points total. The breakdown is as follows: 2 points for
compiling, 3 points for correct output with sample inputs, 5 points for additional inputs.

7. This lab is worth a max total of: 40 points. You can complete as many problems as you like,
but cannot receive more than 40 points towards the lab grade. All points in excess of that are for
bragging rights. (Check the scoreboard to see how you did!)

8. Submission:

 You have unlimited submission attempts until the deadline passes

 You'll receive your lab grade immediately after submitting

 IMPORTANT: if your grade is lower than 70% when the deadline passes, then you must
attend a recitation session & get TA signoff to receive full credit for that lab challenge.

Problem 1: Animal (10 points)
(Software Design) Create an abstract class that represents an Animal and contains abstract methods:
move, call. Create concrete classes: Fish, Bird, Dog which extend the Animal class and implements those
methods. A fish swims and calls "glub glub", a bird flies and calls "chirp chirp" , and a dog runs and calls
"roof roof."
 .
Software Architecture:
The Animal class is the abstract super class and must be instantiated by one of its concrete subclasses:
Dog, Frog, or Fish, which extends from Animal.

UML Object Diagram

UML Class Diagram:

Animal

- type: String

+ constructor (type: String)
+ getType(): String
+ move()
+ call(): String

 *Italicized class/method names within UML Class Diagram indicate abstract class/methods

Animal Constructor Summary:

 Constructor Description

 Animal(String type) Creates a Animal instance with a given type

Animal Method API:

 Modifier and Type Method and Description

 void getType()
 Returns the type of this animal

 abstract void move()
 moves this animal

 abstract
String

 call()
 Returns as text representation the sound that this animal makes

UML Class Diagram:

Dog

+ constructor ()
+ move()
+ call(): String

 *Italicized class/method names within UML Class Diagram indicate abstract class/methods

Dog Constructor Summary:

 Constructor Description

 Dog() Creates a Dog instance with "Dog" type

Dog Method API:

 Modifier and Type Method and Description

 void move()
 Displays to console message: this animal's type + " runs"

 String call()
 Returns as text "roof roof"

UML Class Diagram:

Bird

+ constructor ()
+ move()
+ call(): String

 *Italicized class/method names within UML Class Diagram indicate abstract class/methods

Bird Constructor Summary:

 Constructor Description

 Bird() Creates a Bird instance with "Bird" type

Bird Method API:

 Modifier and Type Method and Description

 void move()
 Displays to console message: this animal's type + " flies"

 String call()
 Returns as text "chirp chirp"

UML Class Diagram:

Fish

+ constructor ()
+ move()
+ call(): String

 *Italicized class/method names within UML Class Diagram indicate abstract class/methods

Fish Constructor Summary:

 Constructor Description

 Fish() Creates a Fish instance with "Fish" type

Fish Method API:

 Modifier and Type Method and Description

 void move()
 Displays to console message: this animal's type + " swims"

 String call()
 Returns as text "glub glub"

Tester Files:
Use the TestAnimal.java file to test your implementation. Compare your results with the
TestAnimal.txt file.

 Sample Method Calls Sample Method Results

 Animal[] zoo = { new Dog(),
 new Fish(),
 new Bird()
 };

 for (Animal animal : zoo){
 animal.move();

System.out.println(animal.call());
 }

 "Dog runs\n"
 "roof roof\n"
 "Fish swims\n"
 "glub glub\n"
 "Bird flies\n"
 "chirp chirp\n"

Problem 2: Employee (10 points)
(Software Design) Create an abstract class that represents an Employee and contains abstract method:
payment. Create concrete classes: SalaryEmployee, CommissionEmployee, HourlyEmployee which
extend the Employee class and implements that abstract method. A Salary Employee has a salary, a
Commision Employee has a commission rate and total sales, and Hourly Employee as an hourly rate and
hours worked.

Software Architecture:
The Employee class is the abstract super class and must be instantiated by one of its concrete
subclasses: SalaryEmployee, CommissionEmployee, or HourlyEmployee, which extends it.

UML Object Diagram

UML Class Diagram:

Employee

- name: String

+ constructor (name: String)
+ toString(): String
+ getPayment(): double

 *Italicized class/method names within UML Class Diagram indicate abstract class/methods

Employee Constructor Summary:

 Constructor Description

 Employee(String name) Creates an Employee instance with a given name

Employee Method API:

 Modifier and Type Method and Description

 void toString()
 Returns a string containing the name of the employee

 abstract
double

 getPayment()
 Returns the wages for this employee (i.e. a paycheck)

UML Class Diagram:

SalaryEmployee

- salary: double

+ constructor (name: String, salary: double)
+ getPayment(): double
+ toString(): String

 *Italicized class/method names within UML Class Diagram indicate abstract class/methods

SalaryEmployee Constructor Summary:

 Constructor Description

 SalaryEmployee(String name, double salary) Creates a SalaryEmployee instance

SalaryEmployee Method API:

 Modifier and Type Method and Description

 double getPayment()
 Returns paycheck amount which is salary / 12 months / 2x a month

 String toString()
 Returns employee text as "%s, salary:$%.02f" with name and salary

UML Class Diagram:

CommissionEmployee

- commissionRate: double
- totalSales: double

+ constructor (name: String, rate: double, sales: double)
+ getPayment(): double
+ toString(): String

 *Italicized class/method names within UML Class Diagram indicate abstract class/methods

CommissionEmployee Constructor Summary:

 Constructor Description

 CommissionEmployee(String name, double rate, double
sales)

 Creates a CommissionEmployee

CommissionEmployee Method API:

 Modifier and Type Method and Description

 double getPayment()
 Returns paycheck amount which is commission rate * total sale

 String toString()
 Returns employee text as "%s, commission:%.02f% @ $%.02f sales" with name, rate, sales

UML Class Diagram:

HourlyEmployee

- hourlyRate: double
- hoursWorked: double

+ constructor (name: String, rate: double, hours: double)
+ getPayment(): double
+ toString(): String

 *Italicized class/method names within UML Class Diagram indicate abstract class/methods

HourlyEmployee Constructor Summary:

 Constructor Description

 HourlyEmployee(String name, double rate, double
hours)

 Creates an HourlyEmployee

HourlyEmployee Method API:

 Modifier and Type Method and Description

 double getPayment()
 Returns paycheck amount which is hourly rate * hours worked

 String toString()
 Returns employee text as "%s, hourly:$%.02f% @ %.02f hours" with name, rate, hours

Tester Files:
Use the TestEmployee.java file to test your implementation. Compare your results with the
TestEmployee.txt file.

 Sample Method Calls Sample Method Results

 Employee[] e = new Employee[3];

 e[0] = new SalaryEmployee("Meg Manager",
 50_000);

 e[1] = new CommissionEmployee("Sal Salesman",
 .15, 3400);

 e[2] = new HourlyEmployee("Timmy Temp",
 10.50, 25);

 for (Employee worker : e){
 System.out.println(worker);
 System.out.printf("Paycheck: $%.02f\n",
 worker.getPayment());
 }

 "Meg Manager, salary:$50000.00\n"
 "Paycheck: $2083.33\n"
 "Sal Salesman, commission:0.15% @ $3400.00
sales\n"
 "Paycheck: $510.00\n"
 "Timmy Temp, hourly:$10.50 @ 25.00 hours\n"
 "Paycheck: $262.50\n";

Problem 3: Shape (10 points)
(Software Design) Create an abstract class that represents a Shape and contains abstract method: area
and perimeter. Create concrete classes: Circle, Rectangle, Triangle which extend the Shape class and
implements the abstract methods. A circle has a radius, a rectangle has width and height, and a triangle
has three sides.

Software Architecture:
The Shape class is the abstract super class and must be instantiated by one of its concrete subclasses:
Circle, Rectangle, or Triangle, which extends it.

UML Object Diagram

UML Class Diagram:

Shape

+ area(): double
+ perimeter(): double

 *Italicized class/method names within UML Class Diagram indicate abstract class/methods

Shape Method API:

 Modifier and Type Method and Description

 abstract
double

 area()
 Returns the area of this shape

 abstract
double

 perimeter()
 Returns the perimeter of this shape

UML Class Diagram:

Circle

- radius: double

+ constructor (radius: double)
+ constructor ()
+ area(): double
+ perimeter(): double
+ toString(): String

 *Italicized class/method names within UML Class Diagram indicate abstract class/methods

Circle Constructor Summary:

 Constructor Description

 Circle(double radius) Creates a Circle with given radius

 Circle() Creates a Circle with radius = 1

SalaryEmployee Method API:

 Modifier and Type Method and Description

 double area()
 Returns Math.PI * (radius)2

 double perimeter()
 Returns 2 * Math.PI * radius

 String toString()
 Returns the String "Circle"

UML Class Diagram:

Rectangle

- width: double
- length: double

+ constructor (width: double, length: double)
+ constructor ()
+ area(): double
+ perimeter(): double
+ toString(): String

 *Italicized class/method names within UML Class Diagram indicate abstract class/methods

Rectangle Constructor Summary:

 Constructor Description

 Rectangle(double width, double
length)

 Creates a Rectangle with given length, width

 Rectangle() Creates a Rectangle with width = 1, length = 1

Rectangle Method API:

 Modifier and Type Method and Description

 double area()
 Returns width * length

 double perimeter()
 Returns 2 * (width + length)

 String toString()
 Returns the String "Rectangle"

UML Class Diagram:

Triangle

- a: double
- b: double
- c: double

+ constructor (a: double, b: double, c: double)
+ constructor ()
+ area(): double
+ perimeter(): double
+ toString(): String

 *Italicized class/method names within UML Class Diagram indicate abstract class/methods

Triangle Constructor Summary:

 Constructor Description

 Triangle(double a, double b, double
c)

 Creates a Triangle with given sides a, b, c

 Triangle() Creates a Triangle with all sides = 1

Triangle Method API:

 Modifier and Type Method and Description

 double area()
 Returns area of triangle using heron's formula

 double perimeter()
 Returns a + b + c

 String toString()
 Returns the String "Triangle"

Tester Files:
Use the TestShape.java file to test your implementation. Compare your results with the
TestShape.txt file.

 Sample Method Calls Sample Method Results

 Shape[] shapes = new Shape[3];
 shapes[0] = new Circle(3);
 shapes[1] = new Rectangle(4,2);
 shapes[2] = new Triangle(1,2,3);

 for (Shape polygon : shapes){
 double area = polygon.area();
 double perimeter = polygon.perimeter();
 System.out.printf("%s: area: %.01f perimeter: %.01f\n",
 polygon, area, perimeter);
}

 "Circle: area: 28.3, perimeter: 18.8\
n"
 "Rectangle: area: 8.0, perimeter:
12.0\n"
 "Triangle: area: 0.0, perimeter: 6.0\
n"

